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Abstract

Stress space is used to illustrate a discussion of the range of stress tensors theoretically compatible with striated faults, and with
deformation twinning. Other than friction laws, each of the main constraints placed on stress by such data specifies the magnitude of a
component of traction. Being linear in elements of the stress tensor, such a constraint by each datum is represented in stress space by a
hyperplane. Comparison at each level of constraint (orientation, sense of shear, assumption of critical ratio or value of shear stress for
faulting/twinning) is made for a single datum, followed by consideration of sets of data, and stress tensor reduction. At no level of constraint
are striated faults and deformation twins equivalent. Fault data cannot constrain absolute values of stress components. Data for untwinned
crystals within twinned/untwinned sets provide the fullest limit to values of deviatoric stresses. Paleostress estimates from twinned/
untwinned data are generally preferable to those from striated faults.q 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

1.1. Background

Over the last three decades, many attempts have been
made to deduce the stress state of part of the Earth in the
geological past (“paleostress”). Although it is wise to incor-
porate evidence from as wide a range of phenomena as
possible (e.g. Lisle and Vandycke, 1996), many published
studies are restricted to a single type of data. One popular
approach is the analysis of fault striae (“slickenlines”),
following the work of Carey and Brunier (1974), Angelier
(1975), Armijo and Cisternas (1978), Angelier and Goguel
(1979) and Etchecopar et al. (1981). Another is the analysis
of crystal orientations of twinned and untwinned mineral
grains in thin section, following among others Turner
(1953, 1962), Nissen (1964), Spang (1972) and Jamison
and Spang (1976).

A constant problem for such paleostress analyses is the
difficulty of separating phases of a polyphase stress history.
Nemcok et al. (1999) propose a method of analysis which
facilitates identification of clusters of like data, and deter-
mines an appropriate stress state for each cluster. In doing
so, they treat fault striation data and deformation twin data
as equivalent, despite mentioning that they offer different
constraints. This contrasts with previous work, particularly
of Laurent and co-workers (e.g. Laurent et al., 1981;
Lacombe et al., 1990, 1992; Lacombe and Laurent, 1992),

who take full account of the differences between the two
types of data, and whose recent calibrations using natural
samples, numerical simulations (Laurent et al., 1990) and
experimentally deformed samples (Lacombe and Laurent,
1996) justify more confidence in stress estimation using
analyses of calcite twinning than that using striated faults.

1.2. Scope and starting point of this paper

This paper is a contribution to discussion. It takes the
form of a comparison of the constraints placed by striated
faults and by deformation twins on an assumed common
generating stress state. The reasonableness, or otherwise,
of the assumption that real structures result from a common
stress state will be mentioned in Section 6, but this is not the
main issue addressed in this paper. The problematic nature
of cluster analysis as part of these procedures (Nemcok et al.,
1999) will be discussed elsewhere.

All the discussion below relies on the tensorial relation-
ship of traction,t, to fault or twin plane orientation, here
given algebraic formt � s.n, wheren is unit normal to the
fault or twin plane ands is the stress tensor. Apart from
differences of terminology and symbolism, the essence of
the theory of stress, as set out by such standard works as Nye
(1957) and Jaeger and Cook (1969, 1979), is consistent in all
the main literature and well presented by Malvern (1969).
Traction is the term used here to mean the limit, as area
tends to zero, of force per unit area of a plane, on one side of
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the plane. Its in-plane and normal components (commonly
“shear stress” and “normal stress”) are adequate for
considering an isotropic fault plane. For deformation twin-
ning, it is necessary to consider its component along an
in-plane linear direction—that of the crystallographically
controlled displacement corresponding to initiation or
growth of deformation twin.

1.3. Terms, symbols and sign conventions

Several competing terminological conventions have long
been established in the literature. Most authors use, fort
above, some phrase that includes either the word “stress”
or the word “traction”. For example, the student text “The
Earth” (Verhoogen et al., 1970, p.467) reports that it “… is
termed thestress vectoror surface traction…”. The core of
this paper is discussion of vectorial representation of tensor
s, nott. So, to avoid confusion, the term “stress vector” and
the symbol “s” will not be used for either in this paper. The
term “s -vector” will be used for a vectorial representation
of the stress state (three-dimensional in real space, concep-
tualised as tensors), while “traction” (hence symbolt) is
used for its expression on a two-dimensional plane in real
space.

Different conventions exist also with regard to symbols
and signs. This paper extends the ideas of Fry (1999) and
therefore follows the same usage. Symbols for vectors and
tensors are in bold, while the elements of the matrix repre-
sentation of a tensor are normal weight followed by row and
column subscripts. To avoid any confusion with strain (as
well as traction), stress is given tensor symbols not s.

For conceptual simplicity, the sign convention of general
physics is adhered to. All vectors representing parameters at
a point are positive outward, and all vectors of same polarity
have same sign. So, positive traction is in the sense
(“tension”) which leads to positive displacement and posi-
tive strain (“extension”) and in the same sense (outward) as
a positive vector normal to that side of a plane to which it
lies. These conventions, which prevent a great deal of
confusion when relating stress, strain and displacement,
conflict at one point, as detailed in the text, with previous
usage deriving from the peculiar geological convention that
compression is positive.

1.4. Stress space representation

To assist appreciation, mathematical relationships are
given geometrical representation. The space used—the
unreduced “stress space” of yield surface and plastic
potential surface analysis (e.g. Hobbset al., 1990), called
“s -space” by Fry (1999) and below—is six dimensional
and has orthogonal axes for the values of the six indepen-
dent matrix elementss11, s22, s33, s23, s31, s12 of the stress
tensor.

The methods discussed will only limit estimates of devia-
toric stress, corresponding geometrically to intersections of
less than six dimensions ins-space. Such tensor reduction is

not identical for all data types and all working assumptions,
and will be considered in Section 5.

It is convenient sometimes to consider the stress tensor
to be represented in s-space by the point
(s11,s22,s33,s23,s31,s12), and sometimes by the “s -vector”,
which extends to this point from the origin (0,0,0,0,0,0).
Geometrical features ins-space are illustrated here by
two- and three-dimensional analogues.

The strength ofs-space representation for paleostress
rests on the fact thatL� v.s.n—the dot product of the
traction vector with a real space vector,v—is linear insij .
This is clearly seen in the expanded form

L � v1n1s11 1 v2n2s22 1 v3n3s33 1 v2n3 1 v3n2

ÿ �
s23

1 v3n1 1 v1n3

ÿ �
s31 1 v1n2 1 v2n1

ÿ �
s12: �1�

If v is a unit vector specifying any general direction,L is
the magnitude of the component of traction along it. Speci-
fying a value ofL limits the locus ins-space of all stress
states with which it is compatible to a hyperplane. The term
“hyperplane” is used here to indicate that the locus extends
infinitely in one less dimension than the space in which it
resides. As such, it has a normal in the remainings-space
dimension. EqualityL� 0 specifies a five-dimensional
hyperplane through the origin (Fry, 1999). It divides
s-space into the two half-spacesL . 0 andL , 0. Equality
L� k defines a hyperplane parallel toL� 0, but displaced
from thes-space origin by a distance dependent onk.

2. One striated fault-levels of constraint

2.1. Orientation

The theoretical basis of the use of a striated fault to
determine stress state is the combination of two assump-
tions. The first is the validity of the generally accepted
theory of stress, encapsulated by the tensorial relationship
t � s.n, mentioned above. The second is that the striation
on the fault indicates the direction of the in-plane com-
ponent of the traction vector along the fault plane (the
“resolved shear stress”). The latter condition may be
restated as

b:s:n � 0 �2�
whereb is a unit vector in the plane of the fault, at right
angles to the striation. This constrains thes-vector to lie
somewhere in the hyperplane of Eq. (2) ins-space (Fry,
1999). The three-dimensional analogue of this is shown in
Fig. 1(a).

2.2. Shear sense

Shear sense is a subsidiary constraint. It does not of itself
constrain the stress tensor but, when added to the fault plane
and striation orientations, it further restricts the permitted
range. The requirement that the component of traction have

N. Fry / Journal of Structural Geology 23 (2001) 1–92



N. Fry / Journal of Structural Geology 23 (2001) 1–9 3

FAULTS TWINS

a

b

c

d

e

f

O
ri

en
ta

ti
o

n
+S

en
se

 o
f 

S
h

ea
r

+S
h

ea
r 

S
tr

es
s

b. nσ. =0

s. nσ. =0

d. nσ =. 0

d. nσ =. τa

d. nσ. > 0

d. nσ. > τa

d. nσ. < 0

d. nσ. < τa

s. nσ. >0

s. nσ. <0

Critical ratio

(twinning)

(no twinning)

Fig. 1. Three-dimensional analogues ofs-space for a single datum of a striated fault (a–c) and a deformation twin (d–f), for known orientations only (a, d),
orientations and shear sense (b, e) and with an assumed minimum ratio (c) or value (f) of shear stress component. The bounding spheres and great circlesare
only aids to visualisation, by their intersection, ofs-space (hyper)planes and (hyper)volumes which extend without limit away from the origin. Dark shading in
(a)–(e) identifies the hyperplane or hypervolume which is the locus of possible points representing the stress tensor. The significance of the lightlyshaded
d.s.n� 0 or d.s.n . 0 hyperplane is different in (d), (e) and (f), as given below. (a) Fault plane and striation orientations limit thes-vector locus to the
hyperplaneb.s.n� 0. (b) The locus in (a) is reduced to the half within half-spaces.s.n . 0 if shear sense is known. (c) According to how a friction law is
applied, (i) assumption of failureat any value abovethe critical threshold ratio of shear to normal stress reduces the extent of the stress locus from that in (b),
but not its dimensionality, whereas (ii) assumption of failureat the thresholdreduces the dimensionality of the locus by one. (d) Deformation twinning could, in
terms of orientation alone, be consistent with any stress state not on the lightly shadedd.s.n� 0 hyperplane of zero component of shear stress. (e) The sense of
shear brought about by twinning limits the stress state to the half spaced.s.n . 0, to one side of the lightly shadedd.s.n� 0 hyperplane. (f) A critical shear
stress for twinning,ta, dividess-space into two parts—one consistent with twinning, the other consistent with no twinning. These are separated by an off-
centre hyperplane boundaryd.s.n� ta (light shading). Therefore, distance as well as direction from thes-space origin is constrained by any twinned or
untwinned datum.



correct sense (in the same sense as the displacement direc-
tion, specified by unit vectors) can be given as the condition
s.s.n . 0. Only that half of hyperplaneb.s.n� 0 lying in
the half-spaces.s.n . 0 is permitted by both orientations
and shear sense, analogous to Fig. 1(b).

2.3. Friction

Adding frictional constraint to the determination of a
stress tensor is complex (e.g. Ce´lérier, 1988), and is not
easily represented in three or fewer dimensions. However,
some aspects of its effect on the locus of possibles-vectors
in s-space can be appreciated qualitatively. In Fig. 1(b) the
s-vector locus is bounded by the intersection ofb.s.n� 0
(orientation) ands.s.n� 0 (zero shear stress). The intersec-
tion of hyperplanes in fulls-space, to which that in Fig. 1(b)
is analogous, is four-dimensional. Searching for thes-space
locus representing a non-zero critical ratio of shear to
normal stress corresponds to moving and bending this
four-dimensional hypersurface through the five dimensions
of b.s.n� 0, away from the restricted locus of conditions of
zero shear stress (s.s.n� 0), into conditions with shear
stress of the correct sense (s.s.n . 0). A number of points
can be highlighted using the analogue, Fig. 1(c).

1. Conditions compatible with a friction law are more
restricted than those permitted by only orientation and
sense of shear.

2. If angle of friction is assumed to be independent of
confining stress, failure can be reproduced at any multi-
ple of a critical set of stress values. Consequently, critical
conditions have a locus ins-space made up of radii from
its origin.

3. Conditionsat a critical threshold have one dimension less
in s-space than conditionsbounded bysuch a threshold.

4. There is no general incompatibility between require-
ments of the frictional constraint and those of the
orientational and shear sense constraints.

3. One twinnable crystallographic plane-levels of
constraint

3.1. Orientation

The direction of displacement that may be brought about
by deformation twinning is dictated by crystal orientation. If
the permitted direction is specified by a unit vectord (m of
Laurent et al., 1981), the component of the traction in the
displacement direction is given byd.s.n. Orientation alone
provides only the constraint of prohibiting twinning when

d:s:n � 0; �3�
analogous to Fig. 1(d).

3.2. Shear sense

When the sense of displacement by twinning is taken into
account, the condition for twinning becomesd.s.n . 0.
This defines the six-dimensional half space to one side of
the Eq. (3) hyperplane, Fig. 1(e). This half space contains
the six half-axes,sij , of same sign as their coefficients in the
expanded form of Eq. (3). (To be consistent with the rest of
this paper, positived is here in the sense of positive traction
causing positive displacement of the positiven side relative
to the negativen side of the twin plane. This is the opposite
sign convention to that used by Laurent et al. (1990).)

3.3. Yield stress

Initiation or growth of a deformation twin takes place at a
yield shear stress, typically designatedta, which is theore-
tically constant and which in calcite has been experimen-
tally confirmed to be independent of temperature, confining
(normal) stress, strain and strain rate, provided temperature
is above a minimum threshold value for activation. Condi-
tions inducing twinning (d.s.n . ta) and those which do
not (d.s.n , ta) lie each side of the critical condition

d:s:n � ta: �4�
The offset of the hyperplane of Eq. (4) from thes-space

origin, analogous to that in Fig. 1(f), is determined by the
yield stress of the particular twin system used in the
analysis.

The above statements concern a single crystal. The rela-
tionship between boundary stresses and twinning in real
polycrystalline samples is discussed briefly in Section 6.3.

4. Stress tensor estimation from sets of data

4.1. Striated fault sets—orientation and shear sense

The illustrations in Fig. 1, and their consideration above,
refer to the constraint on the stress state by a single fault or
twin datum. The constraint given by a group of fault data is
illustrated in similar fashion in Fig. 2(a). This set of three
data is analogous to a set of more than four data ins-space.
One datum has been included of each level of constraint
detailed above and in Fig. 1. This set illustrates two
important observations.

1. Use of some data of known shear sense does not preclude
the inclusion of other data for which shear sense is
unknown, as emphasised by Fry (1999).

2. Optimisation in terms of orientational constraint can be
accomplished by minimising a function of angular errors
in s-space for the hyperplanes (Fig. 2a).

Of possible functions for the latter, the sum of squares
of sines of angles between a stress estimate and the
hyperplanes is computationally simple to minimise. The
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conceptualisation offered by Fry (1999), of minimising the
second moment of the set of unit vector normals to the
hyperplanes, is mathematically identical. A more robust
algorithm could also be formulated. Whatever algorithm
is adopted, it should accommodate instances where fault
data permit more than one degree of freedom in the stress
tensor estimate (Fry, 1999). Geometrically, this corresponds
to the fact that a hyperplane intersection ins-space, analo-
gous to that shown in Fig. 2(a), may have more than one
dimension.

4.2. Striated fault sets-including friction

The following observations are offered regarding how
friction should be taken into account when evaluating a
best fit of stress tensor to fault data.

1. Orientational accuracy, shear sense correctness and
frictional consistency are not independent constraints.
Any estimated frictional condition subsumes shear
sense, and a frictional function is concurrently a function
of orientation. So, these constraints do not provide alter-
native stress values, such as would be represented as
alternative loci ins-space or Fig. 2(a). Instead, they are
nested, the frictionally acceptable locus lying as a subset
within the shear sense acceptable locus within the locus
acceptable in terms of orientations alone. Therefore, it is
not appropriate to evaluate a best-fit stress tensor by
summing separate relative weightings allocated to
orientational accuracy, to shear sense correctness and to
frictional consistency. In general, this nesting of con-
straints favours a stepwise determination—1 orientation;
2 shear sense; 3 friction.

2. Frictional optimisation is for mutual consistency
(Fig. 2b), in contrast to orientational optimisation for
accuracy of match to data. Also, such frictional optimisa-
tion assumes constancy throughout the space and time of
the data of an additional, possibly more variable, stress
parameter—the ratio of deviatoric stress to effective
confining stress—implying an approximately constant
ratio of pore fluid pressure to confining pressure. Further,
real frictional behaviour may be more complex, involv-
ing a non-linear friction law with cohesion. This will
result in critical conditions, which are not radial from
the origin ins-space, making their geometric apprecia-
tion even more problematic.

In the light of both these observations, it would seem wise
to find out first if the orientation and shear sense data are
compatible with a common stress state, before considering
frictional consistency. Whatever law may then be assumed
for the latter, different best estimates of frictional parameter
and stress tensor may be obtained, corresponding to differ-
ent best locations in Fig. 2(b). These will depend whether
the function for fitting to the friction law involves only error
terms for frictional parameters, or regression involving a
trade-off between error terms in the orientational and
frictional parameters.

4.3. Deformation twin sets-orientation and shear sense

Fig. 3 shows cartoon two-dimensional analogues of a
portion of s-space about its origin. For comparison with
twinned/untwinned data, striated fault data are shown in
Fig. 3(a). They are represented by geometric elements,
which radiate linearly without limit from the origin,
and therefore they would be better visualised as their
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Fig. 2. Analogues ofs-space for fault data sets. (a) A three-dimensional
analogue, with complete or partial hyperplanes for three data represented as
unbroken lines on a spherical surface, as in Fig. 1(a–c). (Datum 1: orienta-
tion only. Datum 2: orientation and sense of shear. Datum 3: with additional
assumption about friction.) Their intersection would gives-space co-ordi-
nates representing the stress tensor capable of generating all three data.
They do not intersect perfectly. Optimal allowance of a small error on
each (thin lines) permits their intersection, at a location representing a
best estimate of common generating stress. (b) Cartoon two-dimensional
analogue of part ofs-space to illustrate how assumption of different values
of frictional parameter(s) (usually angle of friction) gives different loci for
failure. Loci for three values (n’’ . n’ . n) are shown for each of four
numbered faults (n� 1,2,3,4): heavy lines (1,2,3,4; heavy dot intersec-
tions); medium lines (1’,2’,3’,4’; open circle intersections); fine lines
(1’’,2’’,3’’,4’’; small dot intersections). The medium weight lines come
closest to having a common intersection (asterisk). Their condition is the
best estimate of the frictional parameter, and their intersection indicates the
candidate stress state.



intersections with a locus of unit radius (circle/sphere/
hypersphere), as in Fig. 1 and Fig. 2(a).

As with a single datum, orientation and sense of
displacement give less constraint for twinning (Fig. 3b)
than for faulting (Fig. 3a). With regard to untwinned crystal
planes, lack of twinning does not necessarily imply incor-
rect orientation or sense; the component of shear stress in
the displacement direction may be less than critical. There-
fore, the sense of untwinned data cannot be used. With
regard to the twinned planes, each datum limits the range

of possible directions ofs-vector from the origin (Fig. 3b).
It might be thought that, with a large enough number of
twinned data, there would be sufficient critically limiting
angles ins-space to give good constraint on thes-vector.
However, as can be shown by consideration of Fig. 3(c), if
the s-vector is small relative tota, the s-space angle
between limiting twinned data will always be large, corre-
sponding to poor constraint on deviatoric stress.

4.4. Twinned/untwinned sets-with a critical shear stress

On the assumption of a constant critical shear stress, the
hyperplane of critical conditions separating those inducing
twinning from those that do not, is, for each datum in
Fig. 3(c), offset from the origin, as illustrated in Fig. 1(f).
To be consistent with a set of twinnable crystal planes, the
s-vector must extend from thes-space origin to beyond
the hyperplane of every twinned crystal orientation, but
not as far as the hyperplane of any crystal orientation
which is available for twinning but has remained
untwinned. This leads to several deductions, illustrated by
Fig. 3(c).

1. The locus of thes-vector in s-space is restricted in
magnitude, not just in direction. This corresponds to
restricting the absolute values of some stress parameters.

2. Both twinned and untwinned data contribute constraint to
the stress state, including absolute values.

3. Twinned crystal data constrain the minimum values.
4. Untwinned crystal data constrain the maximum values.
5. Untwinned crystal data give more constraint than

twinned data on thedirectionof thes-vector, represent-
ing the ratio of the elements of the stress tensor, corre-
sponding in particular tostress ratio.
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Fig. 3. Two-dimensional analogues ofs-space, for sets of 10 data. (a)
Fault data. A line from the origin represents the compatible stress state for
each datum. Some have polarity (from known sense of shear); others do
not. One datum is clearly an outlier, not compatible with remaining data.
The rest are well clustered, their direction indicating the ratio of values of
stress tensor elements. (b) Orientation and shear sense data, for the same
twinnable crystal planes as detailed for (c) below. The condition
d.s.n . 0 for each twinned datum (thick line) defines a half-space of
compatible stress states (unflagged side of line), and a half-space of
incompatible stress states (flagged side of line). The shaded sector indi-
cates directions from the origin compatible with the twinned data. The
untwinned data, shown as fine lines, give no constraint. (c) Twinnable
crystal plane data, assuming a critical shear stress for twinning. For each
datum, compatible stress states lie to the unflagged side of its line. The
shaded polygon shows the range of stress states compatible with all data.
Note the improved definition and the limit to distance from the origin,
compared to (b). Data 1–4 are twinned (continuous lines) and provide a
minimum magnitude of thes-vector. Data 5–7 (dashed lines) are
untwinned and limit the direction and maximum magnitude of thes-
vector. Data 8–10 (dotted lines) are untwinned but inconsequential, as
their constraints lie far from any stress state compatible with the rest of the
data. Note that loss of one untwinned datum (e.g. 5), or change or error in
a critical untwinned datum (e.g. from 6 to 7), leads to greater loss or
modification of constraint than does the loss (e.g. 4) or change (e.g.
from 1 to 2) of a twinned datum.



6. The estimate of maximum stress (from untwinned
planes) is less robust and less precise than the minimum
stress (from twinned planes), being more sensitive to
omission of critical data, to error in determination or to
variability of stress within the sample.

7. A best estimate of location ins-space for thes-vector
could be found by moving the constraining hyperplanes,
while minimising a function of errors inta.

The algorithm for estimating thes-vector, mentioned in
(7), above, needs to differ according to the degree of con-
sistency of the data. In Fig. 3(c), all data are consistent with
a range ofs-vector. An equivalent range in the full dimen-
sionality ofs-space would be bounded by at least six hyper-
planes. Locating a best estimate is achieved by converging
the hyperplanes until only a vanishingly small locus is
consistent with all data. If data are not all consistent, a
few hyperplanes are diverged until a locus is obtained
consistent with all data. This latter relaxation ofta mini-
mises the overlap by which calculated shear stress on the
most highly stressed untwinned planes exceeds that on the
least stressed twinned planes. Laurent et al. (1981) sum-
marise algorithms which are the algebraic equivalents of
both these standard Linear Programming procedures.

The importance of the untwinned planes in their determi-
nations has been well highlighted by Lacombe and Laurent
(1996). Both Laurent et al. (1990) and Lacombe and Laurent
(1996), after Etchecopar (1984), modify the above relaxa-
tion procedure to accord with the asymmetry between
twinned and untwinned constraint (points 5 and 6, above).
Their search for optimum stress tensor calculates a mini-
mum shear stressta’ which is compatible with all twinned
crystals while minimising the sum of all the shear stress
excesses above this value of the untwinned crystals. Laurent
et al. (1990) report that this method improves precision of
the stress estimate.

5. Stress tensor reduction; arbitrary constraints

5.1. Scaling reduction

As illustrated in Fig. 1(a–c), Fig. 2 and Fig. 3(a), striated
faults constrain the stresss-vector in direction but not
magnitude and this remains the case however many faults
are taken into consideration. This accords with the con-
tention that faults limit not the absolute values of stress
parameters, but their ratios, including ratios to effective
normal stress in the case of a linear friction law. So, it is
conventional to impose an arbitrary scaling “reduction” on
the stress tensor. This corresponds ins-space to defining the
intersection of the bests-vector direction with a closed
hypersurface, represented by the sphere in Fig. 1(a–c) and
Fig. 2(a). This may be at some constant or otherwise
constrained distance from the origin (Fry, 1999).

This degree of freedom, requiring scaling reduction, is

absent from estimates of paleostress from deformation twin-
ning which assume a non-zero critical component of shear
stress for twinning.

5.2. Confining stress reduction

Inclusion of a friction law permits estimation of both
deviatoric stress ratios and ratios to effective confining
stress from a set of fault data. Otherwise, the scaling reduc-
tion of the previous paragraph still leaves not a unique best
estimate ofs-vector, but a residual locus of at least one
dimension permitting addition of any amount of isotropic
stress. Similarly for deformation twinning, with yield stress
taken to be independent of confining stress, the best
s-vector can only be constrained to an infinite locus, permit-
ting addition of any amount of isotropic stress. Therefore,
the stress tensor for both types of data is conventionally
reduced to a unique specification of a deviatoric component
by imposing an arbitrary condition. That used by Angelier
et al. (1982),s11 1 s22 1 s33� 0, is the most common. This
is equivalent ins-space to intersecting the remaining
s-vector locus with a hyperplane through the origin (Fry,
1999).

5.3. Residual degrees of freedom

Even with the reduction of stress tensor, as discussed
above, the locus of thes-vector in s-space may not be
unique. It may extend in one or more dimensions, represent-
ing a case for which it would be inappropriate to specify a
unique best estimate of stress tensor. Fry (1999) discusses
and provides examples of striated fault data for which a best
range of tensors is estimated. An additional procedure is
proposed by Fry (1999) for additional graphical representa-
tion (“q-space”), and for the use of shear sense to limit the
estimate further in such cases. This procedure is not applic-
able to deformation twinning. However, Laurent et al.
(1990) imply that residual uncertainty is rare in analyses
of calcite twinning in good samples.

6. Discussion

6.1. Assumption of common state of stress; extrinsic
variation

The portrayal in the foregoing sections is deliberately
simplistic, in order to draw out the essential differences of
constraints on paleostress, and to enable their illustration by
simple analogues. It assumes that a common stress state,
tensor s, existed throughout the spatial and temporal
range sampled by the data. However, departures from a
common stress state are inevitable. They may, in general
terms, be extrinsic or intrinsic. The former are determined
by boundary conditions. They accompany spatial stress
gradients between boundaries of the sampled range, or
changes, of the boundary conditions with time, or both.

N. Fry / Journal of Structural Geology 23 (2001) 1–9 7



This paper will not addressextrinsicvariation of stress state,
apart from making the following general comment. The
larger the distances, which separate the structures, recorded
the larger the discrepancies in stress along a stress gradient.
In as much as twinning provides a paleostress estimate for a
single rock specimen, it is more likely to approximate a
single stress state than faults sampled from a larger volume
of rock.

6.2. Intrinsic fluctuation

Many comments could be made aboutintrinsic depar-
tures from a common stress state. The most important is
that some fluctuation from a common state is integral to
both processes considered in this paper, because both fault
movements and mechanical twins are instances of localised
relief of deviatoric stress by deformation. By relieving
stress, they introduce heterogeneity into even an initially
homogeneous stress field. By deformation, they modify
the geometry of the material around them, including the
location and orientation of neighbouring such structures.
For real structures, a common stress state can only be an
approximation.

Two generalisations follow. One is that good results are
most likely to result where the structures sampled (either
faults or twins) are sparse and overall deformation is slight.
So, for example, one would not expect a good result from
faults which are linked or curved, or have large displace-
ments, or are repeatedly seismic. We should note that the
crystallographic control of twin displacement vector, and its
confining to a single crystal, make the equivalent of such
worst cases impossible by deformation twinning. The other
generalisation is that we may be able to learn how to inter-
pret intrinsic departures, because they may adhere to some
relationship to other inherent features, conditions or compo-
sition of our sample. Work on calcite twinning provides an
example.

6.3. Calcite twinning

Can we discern some reliability in the way calcitic rocks
behave when deformation dominated by twinning proceeds
beyond twin initiation, to the development of abundant
lamellae of visible width? Rowe and Rutter (1990) report
empirical findings that both a threshold bounding shear
stress required to give visibility of twins, and the eventual
size and density of twins at any given stress, vary with grain
size. Newman (1994) demonstrated that the distribution of
grain sizes, not just a size value, should be taken into
account. Their findings are in part explicable by build up
of local stress concentrations at the boundaries of deforming
grains of different sizes.

In the light of such reports, we should note that the algo-
rithms of Laurentet al. (1990) and Lacombe and Laurent
(1996), mentioned in Section 4.4 above, are mathematical
and are blind to associated features of the sample. Rather
than searching for a single best value ofta’ , it might be

more informative to modify their algorithm to test for
correlation between estimatedta and grain size.

However, effects at grain scale are not without their
problems. Porosity, or small proportions of a different
mineral, can have a marked effect on stresses at grain
contacts, and may degrade possible data sets of defor-
mation twinning in natural samples. So, despite the
promise of the works cited above, all such studies are
speculative. One cannot know in advance whether the
data will accord with a common state of stress or not.
Nevertheless, with studies of twinning, one may be able
to search out the most promising sample lithologies and
verify them in thin section. Generally, one cannot restrict
sampling of faults to a few preferred lithologies in the same
way.

6.4. Confidence in a regional common stress state

Using deformation twinning, a set of complete stress
tensor estimates can be made from a sampled array of loca-
tions across a region. If the estimates are consistent, they
will inspire more confidence, in either a common regional
stress state or a gradational change in stress state across a
region, than one or two stress tensors constructed from simi-
larly distributed faults, for which constancy of the stress
state over the region has to be assumed as part of the deter-
mination.

6.5. Fault plane isotropy

The belief that striation on a fault indicates the direction
of the in-plane component of traction, and the validity of Eq.
(2), assume that the fault plane is isotropic, lacking inher-
ently preferred direction of slip. This may or may not be the
case. This important assumption is not well highlighted in
the literature.

7. Conclusions

1. Stress space is conceptually useful for understanding
paleostress estimation.

2. At no level of constraint are deformation twin data
equivalent to striated fault data.

3. A single twin datum constrains paleostress less than a
single fault datum.

4. A large set of twinned and untwinned crystal data can
constrain paleostress more than a large set of fault data.

5. Twinnable crystal planes, which remain untwinned,
contribute most critically to the estimation of a stress
tensor from deformation twinning.

6. For small sets of data, it is not possible to make general
prediction as to which of the two types of data offers the
greater constraint.

7. At every point in the foregoing discussion at which faults
and twins are compared, it is the deformation twinning
method, which is likely to give the better result or inspire
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better confidence. More use should be made of defor-
mation twin data in estimating paleostress, including
corroboration of, and tests of the status of, estimates
made from striated faults.
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Célérier, B., 1988. How much does slip on a reactivated fault plane
constrain the stress tensor? Tectonics 7, 1257–1278.

Etchecopar, A., 1984. Etude des e´tats de contrainte en tectonique cassante
et simulation de de´formation plastiques (approche mathe´matique).
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